Papers
Topics
Authors
Recent
2000 character limit reached

Testing pre-trained Transformer models for Lithuanian news clustering (2004.03461v1)

Published 3 Apr 2020 in cs.IR, cs.CL, and cs.LG

Abstract: A recent introduction of Transformer deep learning architecture made breakthroughs in various natural language processing tasks. However, non-English languages could not leverage such new opportunities with the English text pre-trained models. This changed with research focusing on multilingual models, where less-spoken languages are the main beneficiaries. We compare pre-trained multilingual BERT, XLM-R, and older learned text representation methods as encodings for the task of Lithuanian news clustering. Our results indicate that publicly available pre-trained multilingual Transformer models can be fine-tuned to surpass word vectors but still score much lower than specially trained doc2vec embeddings.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.