Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improving the Robustness of QA Models to Challenge Sets with Variational Question-Answer Pair Generation (2004.03238v2)

Published 7 Apr 2020 in cs.CL, cs.AI, and cs.LG

Abstract: Question answering (QA) models for reading comprehension have achieved human-level accuracy on in-distribution test sets. However, they have been demonstrated to lack robustness to challenge sets, whose distribution is different from that of training sets. Existing data augmentation methods mitigate this problem by simply augmenting training sets with synthetic examples sampled from the same distribution as the challenge sets. However, these methods assume that the distribution of a challenge set is known a priori, making them less applicable to unseen challenge sets. In this study, we focus on question-answer pair generation (QAG) to mitigate this problem. While most existing QAG methods aim to improve the quality of synthetic examples, we conjecture that diversity-promoting QAG can mitigate the sparsity of training sets and lead to better robustness. We present a variational QAG model that generates multiple diverse QA pairs from a paragraph. Our experiments show that our method can improve the accuracy of 12 challenge sets, as well as the in-distribution accuracy. Our code and data are available at https://github.com/KazutoshiShinoda/VQAG.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.