Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Optimistic Agent: Accurate Graph-Based Value Estimation for More Successful Visual Navigation (2004.03222v2)

Published 7 Apr 2020 in cs.CV

Abstract: We humans can impeccably search for a target object, given its name only, even in an unseen environment. We argue that this ability is largely due to three main reasons: the incorporation of prior knowledge (or experience), the adaptation of it to the new environment using the observed visual cues and most importantly optimistically searching without giving up early. This is currently missing in the state-of-the-art visual navigation methods based on Reinforcement Learning (RL). In this paper, we propose to use externally learned prior knowledge of the relative object locations and integrate it into our model by constructing a neural graph. In order to efficiently incorporate the graph without increasing the state-space complexity, we propose our Graph-based Value Estimation (GVE) module. GVE provides a more accurate baseline for estimating the Advantage function in actor-critic RL algorithm. This results in reduced value estimation error and, consequently, convergence to a more optimal policy. Through empirical studies, we show that our agent, dubbed as the optimistic agent, has a more realistic estimate of the state value during a navigation episode which leads to a higher success rate. Our extensive ablation studies show the efficacy of our simple method which achieves the state-of-the-art results measured by the conventional visual navigation metrics, e.g. Success Rate (SR) and Success weighted by Path Length (SPL), in AI2THOR environment.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.