Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Machine Translation with Unsupervised Length-Constraints (2004.03176v1)

Published 7 Apr 2020 in cs.CL

Abstract: We have seen significant improvements in machine translation due to the usage of deep learning. While the improvements in translation quality are impressive, the encoder-decoder architecture enables many more possibilities. In this paper, we explore one of these, the generation of constraint translation. We focus on length constraints, which are essential if the translation should be displayed in a given format. In this work, we propose an end-to-end approach for this task. Compared to a traditional method that first translates and then performs sentence compression, the text compression is learned completely unsupervised. By combining the idea with zero-shot multilingual machine translation, we are also able to perform unsupervised monolingual sentence compression. In order to fulfill the length constraints, we investigated several methods to integrate the constraints into the model. Using the presented technique, we are able to significantly improve the translation quality under constraints. Furthermore, we are able to perform unsupervised monolingual sentence compression.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)