Papers
Topics
Authors
Recent
2000 character limit reached

Topological Persistence Machine of Phase Transitions (2004.03169v3)

Published 7 Apr 2020 in cond-mat.stat-mech, cs.LG, math.AT, and quant-ph

Abstract: The study of phase transitions using data-driven approaches is challenging, especially when little prior knowledge of the system is available. Topological data analysis is an emerging framework for characterizing the shape of data and has recently achieved success in detecting structural transitions in material science, such as the glass--liquid transition. However, data obtained from physical states may not have explicit shapes as structural materials. We thus propose a general framework, termed "topological persistence machine," to construct the shape of data from correlations in states, so that we can subsequently decipher phase transitions via qualitative changes in the shape. Our framework enables an effective and unified approach in phase transition analysis. We demonstrate the efficacy of the approach in detecting the Berezinskii--Kosterlitz--Thouless phase transition in the classical XY model and quantum phase transitions in the transverse Ising and Bose--Hubbard models. Interestingly, while these phase transitions have proven to be notoriously difficult to analyze using traditional methods, they can be characterized through our framework without requiring prior knowledge of the phases. Our approach is thus expected to be widely applicable and will provide practical insights for exploring the phases of experimental physical systems.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.