Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Beyond Background-Aware Correlation Filters: Adaptive Context Modeling by Hand-Crafted and Deep RGB Features for Visual Tracking (2004.02932v2)

Published 6 Apr 2020 in cs.CV, cs.LG, and eess.IV

Abstract: In recent years, the background-aware correlation filters have achie-ved a lot of research interest in the visual target tracking. However, these methods cannot suitably model the target appearance due to the exploitation of hand-crafted features. On the other hand, the recent deep learning-based visual tracking methods have provided a competitive performance along with extensive computations. In this paper, an adaptive background-aware correlation filter-based tracker is proposed that effectively models the target appearance by using either the histogram of oriented gradients (HOG) or convolutional neural network (CNN) feature maps. The proposed method exploits the fast 2D non-maximum suppression (NMS) algorithm and the semantic information comparison to detect challenging situations. When the HOG-based response map is not reliable, or the context region has a low semantic similarity with prior regions, the proposed method constructs the CNN context model to improve the target region estimation. Furthermore, the rejection option allows the proposed method to update the CNN context model only on valid regions. Comprehensive experimental results demonstrate that the proposed adaptive method clearly outperforms the accuracy and robustness of visual target tracking compared to the state-of-the-art methods on the OTB-50, OTB-100, TC-128, UAV-123, and VOT-2015 datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.