Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Analysis and approximation of mixed-dimensional PDEs on 3D-1D domains coupled with Lagrange multipliers (2004.02722v1)

Published 6 Apr 2020 in math.NA and cs.NA

Abstract: Coupled partial differential equations defined on domains with different dimensionality are usually called mixed dimensional PDEs. We address mixed dimensional PDEs on three-dimensional (3D) and one-dimensional domains, giving rise to a 3D-1D coupled problem. Such problem poses several challenges from the standpoint of existence of solutions and numerical approximation. For the coupling conditions across dimensions, we consider the combination of essential and natural conditions, basically the combination of Dirichlet and Neumann conditions. To ensure a meaningful formulation of such conditions, we use the Lagrange multiplier method, suitably adapted to the mixed dimensional case. The well posedness of the resulting saddle point problem is analyzed. Then, we address the numerical approximation of the problem in the framework of the finite element method. The discretization of the Lagrange multiplier space is the main challenge. Several options are proposed, analyzed and compared, with the purpose to determine a good balance between the mathematical properties of the discrete problem and flexibility of implementation of the numerical scheme. The results are supported by evidence based on numerical experiments.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.