Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Joint Embedding of Words and Category Labels for Hierarchical Multi-label Text Classification (2004.02555v3)

Published 6 Apr 2020 in cs.NE, cs.CL, and cs.LG

Abstract: Text classification has become increasingly challenging due to the continuous refinement of classification label granularity and the expansion of classification label scale. To address that, some research has been applied onto strategies that exploit the hierarchical structure in problems with a large number of categories. At present, hierarchical text classification (HTC) has received extensive attention and has broad application prospects. Making full use of the relationship between parent category and child category in text classification task can greatly improve the performance of classification. In this paper, We propose a joint embedding of text and parent category based on hierarchical fine-tuning ordered neurons LSTM (HFT-ONLSTM) for HTC. Our method makes full use of the connection between the upper-level and lower-level labels. Experiments show that our model outperforms the state-of-the-art hierarchical model at a lower computation cost.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube