Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Early Prediction of Buyer-Seller Negotiation Outcomes (2004.02363v2)

Published 6 Apr 2020 in cs.CL and cs.HC

Abstract: Agents that negotiate with humans find broad applications in pedagogy and conversational AI. Most efforts in human-agent negotiations rely on restrictive menu-driven interfaces for communication. To advance the research in language-based negotiation systems, we explore a novel task of early prediction of buyer-seller negotiation outcomes, by varying the fraction of utterances that the model can access. We explore the feasibility of early prediction by using traditional feature-based methods, as well as by incorporating the non-linguistic task context into a pretrained LLM using sentence templates. We further quantify the extent to which linguistic features help in making better predictions apart from the task-specific price information. Finally, probing the pretrained model helps us to identify specific features, such as trust and agreement, that contribute to the prediction performance.

Citations (5)

Summary

We haven't generated a summary for this paper yet.