Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Morphological Computation and Learning to Learn In Natural Intelligent Systems And AI (2004.02304v1)

Published 5 Apr 2020 in cs.AI

Abstract: At present, artificial intelligence in the form of machine learning is making impressive progress, especially the field of deep learning (DL) [1]. Deep learning algorithms have been inspired from the beginning by nature, specifically by the human brain, in spite of our incomplete knowledge about its brain function. Learning from nature is a two-way process as discussed in [2][3][4], computing is learning from neuroscience, while neuroscience is quickly adopting information processing models. The question is, what can the inspiration from computational nature at this stage of the development contribute to deep learning and how much models and experiments in machine learning can motivate, justify and lead research in neuroscience and cognitive science and to practical applications of artificial intelligence.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.