Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A new hashing based nearest neighbors selection technique for big datasets (2004.02290v2)

Published 5 Apr 2020 in cs.LG, cs.DS, and stat.ML

Abstract: KNN has the reputation to be the word simplest but efficient supervised learning algorithm used for either classification or regression. KNN prediction efficiency highly depends on the size of its training data but when this training data grows KNN suffers from slowness in making decisions since it needs to search nearest neighbors within the entire dataset at each decision making. This paper proposes a new technique that enables the selection of nearest neighbors directly in the neighborhood of a given observation. The proposed approach consists of dividing the data space into subcells of a virtual grid built on top of data space. The mapping between the data points and subcells is performed using hashing. When it comes to select the nearest neighbors of a given observation, we firstly identify the cell the observation belongs by using hashing, and then we look for nearest neighbors from that central cell and cells around it layer by layer. From our experiment performance analysis on publicly available datasets, our algorithm outperforms the original KNN in time efficiency with a prediction quality as good as that of KNN it also offers competitive performance with solutions like KDtree

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.