Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Continual Domain-Tuning for Pretrained Language Models (2004.02288v2)

Published 5 Apr 2020 in cs.CL and cs.LG

Abstract: Pre-trained LLMs (LM) such as BERT, DistilBERT, and RoBERTa can be tuned for different domains (domain-tuning) by continuing the pre-training phase on a new target domain corpus. This simple domain tuning (SDT) technique has been widely used to create domain-tuned models such as BioBERT, SciBERT and ClinicalBERT. However, during the pretraining phase on the target domain, the LM models may catastrophically forget the patterns learned from their source domain. In this work, we study the effects of catastrophic forgetting on domain-tuned LM models and investigate methods that mitigate its negative effects. We propose continual learning (CL) based alternatives for SDT, that aim to reduce catastrophic forgetting. We show that these methods may increase the performance of LM models on downstream target domain tasks. Additionally, we also show that constraining the LM model from forgetting the source domain leads to downstream task models that are more robust to domain shifts. We analyze the computational cost of using our proposed CL methods and provide recommendations for computationally lightweight and effective CL domain-tuning procedures.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.