Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

PrivFL: Practical Privacy-preserving Federated Regressions on High-dimensional Data over Mobile Networks (2004.02264v1)

Published 5 Apr 2020 in cs.CR

Abstract: Federated Learning (FL) enables a large number of users to jointly learn a shared ML model, coordinated by a centralized server, where the data is distributed across multiple devices. This approach enables the server or users to train and learn an ML model using gradient descent, while keeping all the training data on users' devices. We consider training an ML model over a mobile network where user dropout is a common phenomenon. Although federated learning was aimed at reducing data privacy risks, the ML model privacy has not received much attention. In this work, we present PrivFL, a privacy-preserving system for training (predictive) linear and logistic regression models and oblivious predictions in the federated setting, while guaranteeing data and model privacy as well as ensuring robustness to users dropping out in the network. We design two privacy-preserving protocols for training linear and logistic regression models based on an additive homomorphic encryption (HE) scheme and an aggregation protocol. Exploiting the training algorithm of federated learning, at the core of our training protocols is a secure multiparty global gradient computation on alive users' data. We analyze the security of our training protocols against semi-honest adversaries. As long as the aggregation protocol is secure under the aggregation privacy game and the additive HE scheme is semantically secure, PrivFL guarantees the users' data privacy against the server, and the server's regression model privacy against the users. We demonstrate the performance of PrivFL on real-world datasets and show its applicability in the federated learning system.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.