Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Feature Super-Resolution Based Facial Expression Recognition for Multi-scale Low-Resolution Faces (2004.02234v1)

Published 5 Apr 2020 in cs.CV

Abstract: Facial Expressions Recognition(FER) on low-resolution images is necessary for applications like group expression recognition in crowd scenarios(station, classroom etc.). Classifying a small size facial image into the right expression category is still a challenging task. The main cause of this problem is the loss of discriminative feature due to reduced resolution. Super-resolution method is often used to enhance low-resolution images, but the performance on FER task is limited when on images of very low resolution. In this work, inspired by feature super-resolution methods for object detection, we proposed a novel generative adversary network-based feature level super-resolution method for robust facial expression recognition(FSR-FER). In particular, a pre-trained FER model was employed as feature extractor, and a generator network G and a discriminator network D are trained with features extracted from images of low resolution and original high resolution. Generator network G tries to transform features of low-resolution images to more discriminative ones by making them closer to the ones of corresponding high-resolution images. For better classification performance, we also proposed an effective classification-aware loss re-weighting strategy based on the classification probability calculated by a fixed FER model to make our model focus more on samples that are easily misclassified. Experiment results on Real-World Affective Faces (RAF) Database demonstrate that our method achieves satisfying results on various down-sample factors with a single model and has better performance on low-resolution images compared with methods using image super-resolution and expression recognition separately.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.