Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Speaker Recognition using SincNet and X-Vector Fusion (2004.02219v1)

Published 5 Apr 2020 in cs.CL, cs.SD, and eess.AS

Abstract: In this paper, we propose an innovative approach to perform speaker recognition by fusing two recently introduced deep neural networks (DNNs) namely - SincNet and X-Vector. The idea behind using SincNet filters on the raw speech waveform is to extract more distinguishing frequency-related features in the initial convolution layers of the CNN architecture. X-Vectors are used to take advantage of the fact that this embedding is an efficient method to churn out fixed dimension features from variable length speech utterances, something which is challenging in plain CNN techniques, making it efficient both in terms of speed and accuracy. Our approach uses the best of both worlds by combining X-vector in the later layers while using SincNet filters in the initial layers of our deep model. This approach allows the network to learn better embedding and converge quicker. Previous works use either X-Vector or SincNet Filters or some modifications, however we introduce a novel fusion architecture wherein we have combined both the techniques to gather more information about the speech signal hence, giving us better results. Our method focuses on the VoxCeleb1 dataset for speaker recognition, and we have used it for both training and testing purposes.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.