Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Inferring Network Structure From Data (2004.02046v1)

Published 4 Apr 2020 in cs.SI, cs.LG, and stat.ML

Abstract: Networks are complex models for underlying data in many application domains. In most instances, raw data is not natively in the form of a network, but derived from sensors, logs, images, or other data. Yet, the impact of the various choices in translating this data to a network have been largely unexamined. In this work, we propose a network model selection methodology that focuses on evaluating a network's utility for varying tasks, together with an efficiency measure which selects the most parsimonious model. We demonstrate that this network definition matters in several ways for modeling the behavior of the underlying system.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.