Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning-based Symbolic Abstractions for Nonlinear Control Systems (2004.01879v4)

Published 4 Apr 2020 in eess.SY and cs.SY

Abstract: Symbolic models or abstractions are known to be powerful tools for the control design of cyber-physical systems (CPSs) with logic specifications. In this paper, we investigate a novel learning-based approach to the construction of symbolic models for nonlinear control systems. In particular, the symbolic model is constructed based on learning the un-modeled part of the dynamics from training data based on state-space exploration, and the concept of an alternating simulation relation that represents behavioral relationships with respect to the original control system. Moreover, we aim at achieving safe exploration, meaning that the trajectory of the system is guaranteed to be in a safe region for all times while collecting the training data. In addition, we provide some techniques to reduce the computational load, in terms of memory and computation time, of constructing the symbolic models and the safety controller synthesis, so as to make our approach practical. Finally, a numerical simulation illustrates the effectiveness of the proposed approach.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube