Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

SOAR: Second-Order Adversarial Regularization (2004.01832v2)

Published 4 Apr 2020 in cs.LG and stat.ML

Abstract: Adversarial training is a common approach to improving the robustness of deep neural networks against adversarial examples. In this work, we propose a novel regularization approach as an alternative. To derive the regularizer, we formulate the adversarial robustness problem under the robust optimization framework and approximate the loss function using a second-order Taylor series expansion. Our proposed second-order adversarial regularizer (SOAR) is an upper bound based on the Taylor approximation of the inner-max in the robust optimization objective. We empirically show that the proposed method significantly improves the robustness of networks against the $\ell_\infty$ and $\ell_2$ bounded perturbations generated using cross-entropy-based PGD on CIFAR-10 and SVHN.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com