Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Unsupervised Domain Adaptation with Progressive Domain Augmentation (2004.01735v2)

Published 3 Apr 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Domain adaptation aims to exploit a label-rich source domain for learning classifiers in a different label-scarce target domain. It is particularly challenging when there are significant divergences between the two domains. In the paper, we propose a novel unsupervised domain adaptation method based on progressive domain augmentation. The proposed method generates virtual intermediate domains via domain interpolation, progressively augments the source domain and bridges the source-target domain divergence by conducting multiple subspace alignment on the Grassmann manifold. We conduct experiments on multiple domain adaptation tasks and the results shows the proposed method achieves the state-of-the-art performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.