Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

M2: Mixed Models with Preferences, Popularities and Transitions for Next-Basket Recommendation (2004.01646v4)

Published 3 Apr 2020 in cs.LG, cs.IR, and stat.ML

Abstract: Next-basket recommendation considers the problem of recommending a set of items into the next basket that users will purchase as a whole. In this paper, we develop a novel mixed model with preferences, popularities and transitions (M2) for the next-basket recommendation. This method models three important factors in next-basket generation process: 1) users' general preferences, 2) items' global popularities and 3) transition patterns among items. Unlike existing recurrent neural network-based approaches, M2 does not use the complicated networks to model the transitions among items, or generate embeddings for users. Instead, it has a simple encoder-decoder based approach (ed-Trans) to better model the transition patterns among items. We compared M2 with different combinations of the factors with 5 state-of-the-art next-basket recommendation methods on 4 public benchmark datasets in recommending the first, second and third next basket. Our experimental results demonstrate that M2 significantly outperforms the state-of-the-art methods on all the datasets in all the tasks, with an improvement of up to 22.1%. In addition, our ablation study demonstrates that the ed-Trans is more effective than recurrent neural networks in terms of the recommendation performance. We also have a thorough discussion on various experimental protocols and evaluation metrics for next-basket recommendation evaluation.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.