Papers
Topics
Authors
Recent
Search
2000 character limit reached

SNEAP: A Fast and Efficient Toolchain for Mapping Large-Scale Spiking Neural Network onto NoC-based Neuromorphic Platform

Published 31 Mar 2020 in cs.DC | (2004.01639v1)

Abstract: Spiking neural network (SNN), as the third generation of artificial neural networks, has been widely adopted in vision and audio tasks. Nowadays, many neuromorphic platforms support SNN simulation and adopt Network-on-Chips (NoC) architecture for multi-cores interconnection. However, interconnection brings huge area overhead to the platform. Moreover, run-time communication on the interconnection has a significant effect on the total power consumption and performance of the platform. In this paper, we propose a toolchain called SNEAP for mapping SNNs to neuromorphic platforms with multi-cores, which aims to reduce the energy and latency brought by spike communication on the interconnection. SNEAP includes two key steps: partitioning the SNN to reduce the spikes communicated between partitions, and mapping the partitions of SNN to the NoC to reduce average hop of spikes under the constraint of hardware resources. SNEAP can reduce more spikes communicated on the interconnection of NoC and spend less time than other toolchains in the partitioning phase. Moreover, the average hop of spikes is reduced more by SNEAP within a time period, which effectively reduces the energy and latency on the NoC-based neuromorphic platform. The experimental results show that SNEAP can achieve 418x reduction in end-to-end execution time, and reduce energy consumption and spike latency, on average, by 23% and 51% respectively, compared with SpiNeMap.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.