Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Temporarily-Aware Context Modelling using Generative Adversarial Networks for Speech Activity Detection (2004.01546v1)

Published 2 Apr 2020 in eess.AS, cs.LG, cs.SD, and stat.ML

Abstract: This paper presents a novel framework for Speech Activity Detection (SAD). Inspired by the recent success of multi-task learning approaches in the speech processing domain, we propose a novel joint learning framework for SAD. We utilise generative adversarial networks to automatically learn a loss function for joint prediction of the frame-wise speech/ non-speech classifications together with the next audio segment. In order to exploit the temporal relationships within the input signal, we propose a temporal discriminator which aims to ensure that the predicted signal is temporally consistent. We evaluate the proposed framework on multiple public benchmarks, including NIST OpenSAT' 17, AMI Meeting and HAVIC, where we demonstrate its capability to outperform state-of-the-art SAD approaches. Furthermore, our cross-database evaluations demonstrate the robustness of the proposed approach across different languages, accents, and acoustic environments.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.