Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Learning for Domain Generalization (2004.01377v1)

Published 3 Apr 2020 in cs.CV, cs.LG, and stat.ML

Abstract: In this paper we propose a sequential learning framework for Domain Generalization (DG), the problem of training a model that is robust to domain shift by design. Various DG approaches have been proposed with different motivating intuitions, but they typically optimize for a single step of domain generalization -- training on one set of domains and generalizing to one other. Our sequential learning is inspired by the idea lifelong learning, where accumulated experience means that learning the $n{th}$ thing becomes easier than the $1{st}$ thing. In DG this means encountering a sequence of domains and at each step training to maximise performance on the next domain. The performance at domain $n$ then depends on the previous $n-1$ learning problems. Thus backpropagating through the sequence means optimizing performance not just for the next domain, but all following domains. Training on all such sequences of domains provides dramatically more `practice' for a base DG learner compared to existing approaches, thus improving performance on a true testing domain. This strategy can be instantiated for different base DG algorithms, but we focus on its application to the recently proposed Meta-Learning Domain generalization (MLDG). We show that for MLDG it leads to a simple to implement and fast algorithm that provides consistent performance improvement on a variety of DG benchmarks.

Citations (28)

Summary

We haven't generated a summary for this paper yet.