Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 70 tok/s
Gemini 2.5 Flash 169 tok/s Pro
Gemini 2.5 Pro 47 tok/s Pro
Kimi K2 194 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Sequential Learning for Domain Generalization (2004.01377v1)

Published 3 Apr 2020 in cs.CV, cs.LG, and stat.ML

Abstract: In this paper we propose a sequential learning framework for Domain Generalization (DG), the problem of training a model that is robust to domain shift by design. Various DG approaches have been proposed with different motivating intuitions, but they typically optimize for a single step of domain generalization -- training on one set of domains and generalizing to one other. Our sequential learning is inspired by the idea lifelong learning, where accumulated experience means that learning the $n{th}$ thing becomes easier than the $1{st}$ thing. In DG this means encountering a sequence of domains and at each step training to maximise performance on the next domain. The performance at domain $n$ then depends on the previous $n-1$ learning problems. Thus backpropagating through the sequence means optimizing performance not just for the next domain, but all following domains. Training on all such sequences of domains provides dramatically more `practice' for a base DG learner compared to existing approaches, thus improving performance on a true testing domain. This strategy can be instantiated for different base DG algorithms, but we focus on its application to the recently proposed Meta-Learning Domain generalization (MLDG). We show that for MLDG it leads to a simple to implement and fast algorithm that provides consistent performance improvement on a variety of DG benchmarks.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.