Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sequential Learning for Domain Generalization (2004.01377v1)

Published 3 Apr 2020 in cs.CV, cs.LG, and stat.ML

Abstract: In this paper we propose a sequential learning framework for Domain Generalization (DG), the problem of training a model that is robust to domain shift by design. Various DG approaches have been proposed with different motivating intuitions, but they typically optimize for a single step of domain generalization -- training on one set of domains and generalizing to one other. Our sequential learning is inspired by the idea lifelong learning, where accumulated experience means that learning the $n{th}$ thing becomes easier than the $1{st}$ thing. In DG this means encountering a sequence of domains and at each step training to maximise performance on the next domain. The performance at domain $n$ then depends on the previous $n-1$ learning problems. Thus backpropagating through the sequence means optimizing performance not just for the next domain, but all following domains. Training on all such sequences of domains provides dramatically more `practice' for a base DG learner compared to existing approaches, thus improving performance on a true testing domain. This strategy can be instantiated for different base DG algorithms, but we focus on its application to the recently proposed Meta-Learning Domain generalization (MLDG). We show that for MLDG it leads to a simple to implement and fast algorithm that provides consistent performance improvement on a variety of DG benchmarks.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.