Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Distributed Inference with Sparse and Quantized Communication (2004.01302v4)

Published 2 Apr 2020 in eess.SY, cs.GT, cs.IT, cs.LG, cs.SY, and math.IT

Abstract: We consider the problem of distributed inference where agents in a network observe a stream of private signals generated by an unknown state, and aim to uniquely identify this state from a finite set of hypotheses. We focus on scenarios where communication between agents is costly, and takes place over channels with finite bandwidth. To reduce the frequency of communication, we develop a novel event-triggered distributed learning rule that is based on the principle of diffusing low beliefs on each false hypothesis. Building on this principle, we design a trigger condition under which an agent broadcasts only those components of its belief vector that have adequate innovation, to only those neighbors that require such information. We prove that our rule guarantees convergence to the true state exponentially fast almost surely despite sparse communication, and that it has the potential to significantly reduce information flow from uninformative agents to informative agents. Next, to deal with finite-precision communication channels, we propose a distributed learning rule that leverages the idea of adaptive quantization. We show that by sequentially refining the range of the quantizers, every agent can learn the truth exponentially fast almost surely, while using just $1$ bit to encode its belief on each hypothesis. For both our proposed algorithms, we rigorously characterize the trade-offs between communication-efficiency and the learning rate.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.