Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Sum-product networks: A survey (2004.01167v1)

Published 2 Apr 2020 in cs.LG and cs.AI

Abstract: A sum-product network (SPN) is a probabilistic model, based on a rooted acyclic directed graph, in which terminal nodes represent univariate probability distributions and non-terminal nodes represent convex combinations (weighted sums) and products of probability functions. They are closely related to probabilistic graphical models, in particular to Bayesian networks with multiple context-specific independencies. Their main advantage is the possibility of building tractable models from data, i.e., models that can perform several inference tasks in time proportional to the number of links in the graph. They are somewhat similar to neural networks and can address the same kinds of problems, such as image processing and natural language understanding. This paper offers a survey of SPNs, including their definition, the main algorithms for inference and learning from data, the main applications, a brief review of software libraries, and a comparison with related models

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.