Nass: A New Approach to Graph Similarity Search (2004.01124v1)
Abstract: In this paper, we study the problem of graph similarity search with graph edit distance (GED) constraints. Due to the NP-hardness of GED computation, existing solutions to this problem adopt the filtering-and-verification framework with a main focus on the filtering phase to generate a small number of candidate graphs. However, they have a limitation that the number of candidates grows extremely rapidly as a GED threshold increases. To address the limitation, we propose a new approach that utilizes GED computation results in generating candidate graphs. The main idea is that whenever we identify a result graph of the query, we immediately regenerate candidate graphs using a subset of pre-computed graphs similar to the identified result graph. To speed up GED computation, we also develop a novel GED computation algorithm. The proposed algorithm reduces the search space for GED computation by utilizing a series of filtering techniques, which have been used to generate candidates in existing solutions. Experimental results on real datasets demonstrate the proposed approach significantly outperforms the state-of-the art techniques.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.