Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Mean Waiting Time in Large-Scale and Critically Loaded Power of d Load Balancing Systems (2004.00876v2)

Published 2 Apr 2020 in math.PR and cs.PF

Abstract: Mean field models are a popular tool used to analyse load balancing policies. In some cases the waiting time distribution of the mean field limit has an explicit form. In other cases it can be computed as the solution of a set of differential equations. Here we study the limit of the mean waiting time $E[W_\lambda]$ as the arrival rate $\lambda$ approaches $1$ for a number of load balancing policies when job sizes are exponential with mean $1$ (i.e. the system gets close to instability). As $E[W_\lambda]$ diverges to infinity, we scale with $-\log(1-\lambda)$ and present a method to compute the limit $\lim_{\lambda\rightarrow 1-}-E[W_\lambda]/\log(1-\lambda)$. This limit has a surprisingly simple form for the load balancing algorithms considered. We present a general result that holds for any policy for which the associated differential equation satisfies a list of assumptions. For the LL(d) policy which assigns an incoming job to a server with the least work left among d randomly selected servers these assumptions are trivially verified. For this policy we prove the limit is given by $\frac{1}{d-1}$. We further show that the LL(d,K) policy, which assigns batches of $K$ jobs to the $K$ least loaded servers among d randomly selected servers, satisfies the assumptions and the limit is equal to $\frac{K}{d-K}$. For a policy which applies LL($d_i$) with probability $p_i$, we show that the limit is given by $\frac{1}{\sum_ip_id_i-1}$. We further indicate that our main result can also be used for load balancers with redundancy or memory. In addition, we propose an alternate scaling $-\log(p_\lambda)$ instead of $-\log(1-\lambda)$, for which the limit $\lim_{\lambda\rightarrow 0+}-E[W_\lambda]/\log(p_\lambda)$ is well defined and non-zero (contrary to $\lim_{\lambda\rightarrow 0+}-E[W_\lambda]/\log(1-\lambda)$), while $\lim_{\lambda\rightarrow 1-}\log(1-\lambda) / \log(p_\lambda)=1$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.