Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 171 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

k-Median clustering under discrete Fréchet and Hausdorff distances (2004.00722v1)

Published 1 Apr 2020 in cs.CG

Abstract: We give the first near-linear time $(1+\eps)$-approximation algorithm for $k$-median clustering of polygonal trajectories under the discrete Fr\'{e}chet distance, and the first polynomial time $(1+\eps)$-approximation algorithm for $k$-median clustering of finite point sets under the Hausdorff distance, provided the cluster centers, ambient dimension, and $k$ are bounded by a constant. The main technique is a general framework for solving clustering problems where the cluster centers are restricted to come from a \emph{simpler} metric space. We precisely characterize conditions on the simpler metric space of the cluster centers that allow faster $(1+\eps)$-approximations for the $k$-median problem. We also show that the $k$-median problem under Hausdorff distance is \textsc{NP-Hard}.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.