Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An approximate KLD based experimental design for models with intractable likelihoods (2004.00715v2)

Published 1 Apr 2020 in stat.CO and stat.ML

Abstract: Data collection is a critical step in statistical inference and data science, and the goal of statistical experimental design (ED) is to find the data collection setup that can provide most information for the inference. In this work we consider a special type of ED problems where the likelihoods are not available in a closed form. In this case, the popular information-theoretic Kullback-Leibler divergence (KLD) based design criterion can not be used directly, as it requires to evaluate the likelihood function. To address the issue, we derive a new utility function, which is a lower bound of the original KLD utility. This lower bound is expressed in terms of the summation of two or more entropies in the data space, and thus can be evaluated efficiently via entropy estimation methods. We provide several numerical examples to demonstrate the performance of the proposed method.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)