Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

More Grounded Image Captioning by Distilling Image-Text Matching Model (2004.00390v1)

Published 1 Apr 2020 in cs.CV and cs.CL

Abstract: Visual attention not only improves the performance of image captioners, but also serves as a visual interpretation to qualitatively measure the caption rationality and model transparency. Specifically, we expect that a captioner can fix its attentive gaze on the correct objects while generating the corresponding words. This ability is also known as grounded image captioning. However, the grounding accuracy of existing captioners is far from satisfactory. To improve the grounding accuracy while retaining the captioning quality, it is expensive to collect the word-region alignment as strong supervision. To this end, we propose a Part-of-Speech (POS) enhanced image-text matching model (SCAN \cite{lee2018stacked}): POS-SCAN, as the effective knowledge distillation for more grounded image captioning. The benefits are two-fold: 1) given a sentence and an image, POS-SCAN can ground the objects more accurately than SCAN; 2) POS-SCAN serves as a word-region alignment regularization for the captioner's visual attention module. By showing benchmark experimental results, we demonstrate that conventional image captioners equipped with POS-SCAN can significantly improve the grounding accuracy without strong supervision. Last but not the least, we explore the indispensable Self-Critical Sequence Training (SCST) \cite{Rennie_2017_CVPR} in the context of grounded image captioning and show that the image-text matching score can serve as a reward for more grounded captioning \footnote{https://github.com/YuanEZhou/Grounded-Image-Captioning}.

Citations (115)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.