Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Leveraging User-Diversity in Energy-Efficient Edge-Facilitated Collaborative Fog Computing (2004.00113v2)

Published 31 Mar 2020 in eess.SP and cs.DC

Abstract: Motivated by applications such as on-device collaborative neural network inference, this work investigates edge-facilitated collaborative fog computing - in which edge-devices collaborate with each other and with the edge of the network to complete a processing task - to augment the computing capabilities of individual edge-devices while optimizing the collaboration for energy-efficiency. Collaborative computing is modeled using the Map-Reduce distributed computing framework, consisting in two rounds of computations separated by a communication phase. The computing load is optimally distributed among the edge-devices, taking into account their diversity in term of computing and communications capabilities. In addition, edge-devices local parameters such as CPU clock frequency and RF transmit power are also optimized for energy-efficiency. The corresponding optimization problem can be shown to be convex and optimality conditions can be obtained through Lagrange duality theory. A waterfilling-like interpretation for the size of the computing load assigned to each edge-device is given. Numerical experiments demonstrate the benefits of the proposed optimal collaborative-computing scheme over various other schemes in several respects. Most notably, the proposed scheme exhibits increased probability of successfully dealing with heavier computations and/or smaller latency along with energy-efficiency gains of up to two orders of magnitude. Both improvements come from the scheme ability to optimally leverage edge-devices diversity.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.