Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Leveraging User-Diversity in Energy-Efficient Edge-Facilitated Collaborative Fog Computing (2004.00113v2)

Published 31 Mar 2020 in eess.SP and cs.DC

Abstract: Motivated by applications such as on-device collaborative neural network inference, this work investigates edge-facilitated collaborative fog computing - in which edge-devices collaborate with each other and with the edge of the network to complete a processing task - to augment the computing capabilities of individual edge-devices while optimizing the collaboration for energy-efficiency. Collaborative computing is modeled using the Map-Reduce distributed computing framework, consisting in two rounds of computations separated by a communication phase. The computing load is optimally distributed among the edge-devices, taking into account their diversity in term of computing and communications capabilities. In addition, edge-devices local parameters such as CPU clock frequency and RF transmit power are also optimized for energy-efficiency. The corresponding optimization problem can be shown to be convex and optimality conditions can be obtained through Lagrange duality theory. A waterfilling-like interpretation for the size of the computing load assigned to each edge-device is given. Numerical experiments demonstrate the benefits of the proposed optimal collaborative-computing scheme over various other schemes in several respects. Most notably, the proposed scheme exhibits increased probability of successfully dealing with heavier computations and/or smaller latency along with energy-efficiency gains of up to two orders of magnitude. Both improvements come from the scheme ability to optimally leverage edge-devices diversity.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.