Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Epistemic Phase Transitions in Mathematical Proofs (2004.00055v2)

Published 31 Mar 2020 in cs.SC, cs.AI, math.HO, physics.soc-ph, and q-bio.NC

Abstract: Mathematical proofs are both paradigms of certainty and some of the most explicitly-justified arguments that we have in the cultural record. Their very explicitness, however, leads to a paradox, because the probability of error grows exponentially as the argument expands. When a mathematician encounters a proof, how does she come to believe it? Here we show that, under a cognitively-plausible belief formation mechanism combining deductive and abductive reasoning, belief in mathematical arguments can undergo what we call an epistemic phase transition: a dramatic and rapidly-propagating jump from uncertainty to near-complete confidence at reasonable levels of claim-to-claim error rates. To show this, we analyze an unusual dataset of forty-eight machine-aided proofs from the formalized reasoning system Coq, including major theorems ranging from ancient to 21st Century mathematics, along with five hand-constructed cases including Euclid, Apollonius, Hernstein's Topics in Algebra, and Andrew Wiles's proof of Fermat's Last Theorem. Our results bear both on recent work in the history and philosophy of mathematics on how we understand proofs, and on a question, basic to cognitive science, of how we justify complex beliefs.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com