VC density of set systems defnable in tree-like graphs (2003.14177v1)
Abstract: We study set systems definable in graphs using variants of logic with different expressive power. Our focus is on the notion of Vapnik-Chervonenkis density: the smallest possible degree of a polynomial bounding the cardinalities of restrictions of such set systems. On one hand, we prove that if $\varphi(\bar x,\bar y)$ is a fixed CMSO$_1$ formula and $\cal C$ is a class of graphs with uniformly bounded cliquewidth, then the set systems defined by $\varphi$ in graphs from $\cal C$ have VC density at most $|\bar y|$, which is the smallest bound that one could expect. We also show an analogous statement for the case when $\varphi(\bar x,\bar y)$ is a CMSO$_2$ formula and $\cal C$ is a class of graphs with uniformly bounded treewidth. We complement these results by showing that if $\cal C$ has unbounded cliquewidth (respectively, treewidth), then, under some mild technical assumptions on $\cal C$, the set systems definable by CMSO$_1$ (respectively, CMSO$_2$) formulas in graphs from $\cal C$ may have unbounded VC dimension, hence also unbounded VC density.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.