Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 140 tok/s Pro
Kimi K2 208 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Active exploration in adaptive model predictive control (2003.14120v2)

Published 31 Mar 2020 in eess.SY, cs.SY, and math.OC

Abstract: A dual adaptive model predictive control (MPC) algorithm is presented for linear, time-invariant systems subject to bounded disturbances and parametric uncertainty in the state-space matrices. Online set-membership identification is performed to reduce the uncertainty and thus control affects both the informativity of identification and the system's performance. The main contribution of the paper is to include this dual effect in the MPC optimization problem using a predicted worst-case cost in the objective function. This allows the controller to perform active exploration, that is, the control input reduces the uncertainty in the regions of the parameter space that have most influence on the performance. Additionally, the MPC algorithm ensures robust constraint satisfaction of state and input constraints. Advantages of the proposed algorithm are shown by comparing it to a passive adaptive MPC algorithm from the literature.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.