Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Characterizing Speech Adversarial Examples Using Self-Attention U-Net Enhancement (2003.13917v2)

Published 31 Mar 2020 in eess.AS, cs.CL, cs.CR, cs.LG, and cs.SD

Abstract: Recent studies have highlighted adversarial examples as ubiquitous threats to the deep neural network (DNN) based speech recognition systems. In this work, we present a U-Net based attention model, U-Net${At}$, to enhance adversarial speech signals. Specifically, we evaluate the model performance by interpretable speech recognition metrics and discuss the model performance by the augmented adversarial training. Our experiments show that our proposed U-Net${At}$ improves the perceptual evaluation of speech quality (PESQ) from 1.13 to 2.78, speech transmission index (STI) from 0.65 to 0.75, short-term objective intelligibility (STOI) from 0.83 to 0.96 on the task of speech enhancement with adversarial speech examples. We conduct experiments on the automatic speech recognition (ASR) task with adversarial audio attacks. We find that (i) temporal features learned by the attention network are capable of enhancing the robustness of DNN based ASR models; (ii) the generalization power of DNN based ASR model could be enhanced by applying adversarial training with an additive adversarial data augmentation. The ASR metric on word-error-rates (WERs) shows that there is an absolute 2.22 $\%$ decrease under gradient-based perturbation, and an absolute 2.03 $\%$ decrease, under evolutionary-optimized perturbation, which suggests that our enhancement models with adversarial training can further secure a resilient ASR system.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube