Papers
Topics
Authors
Recent
2000 character limit reached

A large-scale Twitter dataset for drug safety applications mined from publicly existing resources (2003.13900v1)

Published 31 Mar 2020 in cs.IR and cs.SI

Abstract: With the increase in popularity of deep learning models for NLP tasks, in the field of Pharmacovigilance, more specifically for the identification of Adverse Drug Reactions (ADRs), there is an inherent need for large-scale social-media datasets aimed at such tasks. With most researchers allocating large amounts of time to crawl Twitter or buying expensive pre-curated datasets, then manually annotating by humans, these approaches do not scale well as more and more data keeps flowing in Twitter. In this work we re-purpose a publicly available archived dataset of more than 9.4 billion Tweets with the objective of creating a very large dataset of drug usage-related tweets. Using existing manually curated datasets from the literature, we then validate our filtered tweets for relevance using machine learning methods, with the end result of a publicly available dataset of 1,181,993 million tweets for public use. We provide all code and detailed procedure on how to extract this dataset and the selected tweet ids for researchers to use.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.