Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Fairness Evaluation in Presence of Biased Noisy Labels (2003.13808v1)

Published 30 Mar 2020 in stat.ME and cs.CY

Abstract: Risk assessment tools are widely used around the country to inform decision making within the criminal justice system. Recently, considerable attention has been devoted to the question of whether such tools may suffer from racial bias. In this type of assessment, a fundamental issue is that the training and evaluation of the model is based on a variable (arrest) that may represent a noisy version of an unobserved outcome of more central interest (offense). We propose a sensitivity analysis framework for assessing how assumptions on the noise across groups affect the predictive bias properties of the risk assessment model as a predictor of reoffense. Our experimental results on two real world criminal justice data sets demonstrate how even small biases in the observed labels may call into question the conclusions of an analysis based on the noisy outcome.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.