Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear Attitude Estimation for Small UAVs with Low Power Microprocessors (2003.13802v1)

Published 30 Mar 2020 in math.OC, cs.SY, and eess.SY

Abstract: Among algorithms used for sensor fusion for attitude estimation in unmanned aerial vehicles, the Extended Kalman Filter (EKF) is the most commonly used for estimation. In this paper, we propose a new version of H2 estimation called extended H2 estimation that can overcome the limitations of the extended Kalman Filter, specifically with respect to computational speed, memory usage, and root mean squared error. We formulate a new attitude-estimation algorithm, where the filter gain is designed offline about a nominal operating point, but the filter dynamics is implemented using the nonlinear system dynamics. We refer to this implementation of the H2 optimal estimator as the extended H2 estimator. The solution presented is tested on two cases, corresponding to slow and rapid motions, and compared against the EKF in the performance metrics mentioned above.

Citations (2)

Summary

We haven't generated a summary for this paper yet.