Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Faster Subquadratic Algorithm for the Longest Common Increasing Subsequence Problem (2003.13589v1)

Published 30 Mar 2020 in cs.DS

Abstract: The Longest Common Increasing Subsequence (LCIS) is a variant of the classical Longest Common Subsequence (LCS), in which we additionally require the common subsequence to be strictly increasing. While the well-known "Four Russians" technique can be used to find LCS in subquadratic time, it does not seem applicable to LCIS. Recently, Duraj [STACS 2020] used a completely different method based on the combinatorial properties of LCIS to design an $\mathcal{O}(n2(\log\log n)2/\log{1/6}n)$ time algorithm. We show that an approach based on exploiting tabulation can be used to construct an asymptotically faster $\mathcal{O}(n2 \log\log n/\sqrt{\log n})$ time algorithm. As our solution avoids using the specific combinatorial properties of LCIS, it can be also adapted for the Longest Common Weakly Increasing Subsequence (LCWIS).

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.