Papers
Topics
Authors
Recent
2000 character limit reached

A Faster Subquadratic Algorithm for the Longest Common Increasing Subsequence Problem (2003.13589v1)

Published 30 Mar 2020 in cs.DS

Abstract: The Longest Common Increasing Subsequence (LCIS) is a variant of the classical Longest Common Subsequence (LCS), in which we additionally require the common subsequence to be strictly increasing. While the well-known "Four Russians" technique can be used to find LCS in subquadratic time, it does not seem applicable to LCIS. Recently, Duraj [STACS 2020] used a completely different method based on the combinatorial properties of LCIS to design an $\mathcal{O}(n2(\log\log n)2/\log{1/6}n)$ time algorithm. We show that an approach based on exploiting tabulation can be used to construct an asymptotically faster $\mathcal{O}(n2 \log\log n/\sqrt{\log n})$ time algorithm. As our solution avoids using the specific combinatorial properties of LCIS, it can be also adapted for the Longest Common Weakly Increasing Subsequence (LCWIS).

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.