Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Super Resolution for Root Imaging (2003.13537v2)

Published 30 Mar 2020 in cs.CV and q-bio.QM

Abstract: High-resolution cameras have become very helpful for plant phenotyping by providing a mechanism for tasks such as target versus background discrimination, and the measurement and analysis of fine-above-ground plant attributes. However, the acquisition of high-resolution (HR) imagery of plant roots is more challenging than above-ground data collection. Thus, an effective super-resolution (SR) algorithm is desired for overcoming resolution limitations of sensors, reducing storage space requirements, and boosting the performance of later analysis, such as automatic segmentation. We propose a SR framework for enhancing images of plant roots by using convolutional neural networks (CNNs). We compare three alternatives for training the SR model: i) training with non-plant-root images, ii) training with plant-root images, and iii) pretraining the model with non-plant-root images and fine-tuning with plant-root images. We demonstrate on a collection of publicly available datasets that the SR models outperform the basic bicubic interpolation even when trained with non-root datasets. Also, our segmentation experiments show that high performance on this task can be achieved independently of the SNR. Therefore, we conclude that the quality of the image enhancement depends on the application.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.