Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to Find a Point in the Convex Hull Privately (2003.13192v1)

Published 30 Mar 2020 in cs.DS, cs.CG, cs.CR, and cs.LG

Abstract: We study the question of how to compute a point in the convex hull of an input set $S$ of $n$ points in ${\mathbb R}d$ in a differentially private manner. This question, which is trivial non-privately, turns out to be quite deep when imposing differential privacy. In particular, it is known that the input points must reside on a fixed finite subset $G\subseteq{\mathbb R}d$, and furthermore, the size of $S$ must grow with the size of $G$. Previous works focused on understanding how $n$ needs to grow with $|G|$, and showed that $n=O\left(d{2.5}\cdot8{\log*|G|}\right)$ suffices (so $n$ does not have to grow significantly with $|G|$). However, the available constructions exhibit running time at least $|G|{d2}$, where typically $|G|=Xd$ for some (large) discretization parameter $X$, so the running time is in fact $\Omega(X{d3})$. In this paper we give a differentially private algorithm that runs in $O(nd)$ time, assuming that $n=\Omega(d4\log X)$. To get this result we study and exploit some structural properties of the Tukey levels (the regions $D_{\ge k}$ consisting of points whose Tukey depth is at least $k$, for $k=0,1,...$). In particular, we derive lower bounds on their volumes for point sets $S$ in general position, and develop a rather subtle mechanism for handling point sets $S$ in degenerate position (where the deep Tukey regions have zero volume). A naive approach to the construction of the Tukey regions requires $n{O(d2)}$ time. To reduce the cost to $O(nd)$, we use an approximation scheme for estimating the volumes of the Tukey regions (within their affine spans in case of degeneracy), and for sampling a point from such a region, a scheme that is based on the volume estimation framework of Lov\'asz and Vempala (FOCS 2003) and of Cousins and Vempala (STOC 2015). Making this framework differentially private raises a set of technical challenges that we address.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Haim Kaplan (111 papers)
  2. Micha Sharir (93 papers)
  3. Uri Stemmer (58 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.