Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

In-Hand Object-Dynamics Inference using Tactile Fingertips (2003.13165v2)

Published 30 Mar 2020 in cs.RO

Abstract: Having the ability to estimate an object's properties through interaction will enable robots to manipulate novel objects. Object's dynamics, specifically the friction and inertial parameters have only been estimated in a lab environment with precise and often external sensing. Could we infer an object's dynamics in the wild with only the robot's sensors? In this paper, we explore the estimation of dynamics of a grasped object in motion, with tactile force sensing at multiple fingertips. Our estimation approach does not rely on torque sensing to estimate the dynamics. To estimate friction, we develop a control scheme to actively interact with the object until slip is detected. To robustly perform the inertial estimation, we setup a factor graph that fuses all our sensor measurements on physically consistent manifolds and perform inference. We show that tactile fingertips enable in-hand dynamics estimation of low mass objects.

Citations (30)

Summary

We haven't generated a summary for this paper yet.