Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Are Direct Links Necessary in RVFL NNs for Regression? (2003.13090v1)

Published 29 Mar 2020 in cs.LG and stat.ML

Abstract: A random vector functional link network (RVFL) is widely used as a universal approximator for classification and regression problems. The big advantage of RVFL is fast training without backpropagation. This is because the weights and biases of hidden nodes are selected randomly and stay untrained. Recently, alternative architectures with randomized learning are developed which differ from RVFL in that they have no direct links and a bias term in the output layer. In this study, we investigate the effect of direct links and output node bias on the regression performance of RVFL. For generating random parameters of hidden nodes we use the classical method and two new methods recently proposed in the literature. We test the RVFL performance on several function approximation problems with target functions of different nature: nonlinear, nonlinear with strong fluctuations, nonlinear with linear component and linear. Surprisingly, we found that the direct links and output node bias do not play an important role in improving RVFL accuracy for typical nonlinear regression problems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.