Papers
Topics
Authors
Recent
2000 character limit reached

Parallel Knowledge Transfer in Multi-Agent Reinforcement Learning (2003.13085v1)

Published 29 Mar 2020 in cs.AI, cs.LG, and cs.MA

Abstract: Multi-agent reinforcement learning is a standard framework for modeling multi-agent interactions applied in real-world scenarios. Inspired by experience sharing in human groups, learning knowledge parallel reusing between agents can potentially promote team learning performance, especially in multi-task environments. When all agents interact with the environment and learn simultaneously, how each independent agent selectively learns from other agents' behavior knowledge is a problem that we need to solve. This paper proposes a novel knowledge transfer framework in MARL, PAT (Parallel Attentional Transfer). We design two acting modes in PAT, student mode and self-learning mode. Each agent in our approach trains a decentralized student actor-critic to determine its acting mode at each time step. When agents are unfamiliar with the environment, the shared attention mechanism in student mode effectively selects learning knowledge from other agents to decide agents' actions. PAT outperforms state-of-the-art empirical evaluation results against the prior advising approaches. Our approach not only significantly improves team learning rate and global performance, but also is flexible and transferable to be applied in various multi-agent systems.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.