Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Data-Driven Neuromorphic DRAM-based CNN and RNN Accelerators (2003.13006v1)

Published 29 Mar 2020 in cs.CV and cs.NE

Abstract: The energy consumed by running large deep neural networks (DNNs) on hardware accelerators is dominated by the need for lots of fast memory to store both states and weights. This large required memory is currently only economically viable through DRAM. Although DRAM is high-throughput and low-cost memory (costing 20X less than SRAM), its long random access latency is bad for the unpredictable access patterns in spiking neural networks (SNNs). In addition, accessing data from DRAM costs orders of magnitude more energy than doing arithmetic with that data. SNNs are energy-efficient if local memory is available and few spikes are generated. This paper reports on our developments over the last 5 years of convolutional and recurrent deep neural network hardware accelerators that exploit either spatial or temporal sparsity similar to SNNs but achieve SOA throughput, power efficiency and latency even with the use of DRAM for the required storage of the weights and states of large DNNs.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.