Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Adaptive Object Detection with Dual Multi-Label Prediction (2003.12943v2)

Published 29 Mar 2020 in cs.CV, cs.LG, and eess.IV

Abstract: In this paper, we propose a novel end-to-end unsupervised deep domain adaptation model for adaptive object detection by exploiting multi-label object recognition as a dual auxiliary task. The model exploits multi-label prediction to reveal the object category information in each image and then uses the prediction results to perform conditional adversarial global feature alignment, such that the multi-modal structure of image features can be tackled to bridge the domain divergence at the global feature level while preserving the discriminability of the features. Moreover, we introduce a prediction consistency regularization mechanism to assist object detection, which uses the multi-label prediction results as an auxiliary regularization information to ensure consistent object category discoveries between the object recognition task and the object detection task. Experiments are conducted on a few benchmark datasets and the results show the proposed model outperforms the state-of-the-art comparison methods.

Citations (51)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.