Papers
Topics
Authors
Recent
2000 character limit reached

MCFlow: Monte Carlo Flow Models for Data Imputation (2003.12628v1)

Published 27 Mar 2020 in cs.LG, cs.CV, and stat.ML

Abstract: We consider the topic of data imputation, a foundational task in machine learning that addresses issues with missing data. To that end, we propose MCFlow, a deep framework for imputation that leverages normalizing flow generative models and Monte Carlo sampling. We address the causality dilemma that arises when training models with incomplete data by introducing an iterative learning scheme which alternately updates the density estimate and the values of the missing entries in the training data. We provide extensive empirical validation of the effectiveness of the proposed method on standard multivariate and image datasets, and benchmark its performance against state-of-the-art alternatives. We demonstrate that MCFlow is superior to competing methods in terms of the quality of the imputed data, as well as with regards to its ability to preserve the semantic structure of the data.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.