Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Evaluation of Prohibited Item Classification and Detection in Volumetric 3D Computed Tomography Baggage Security Screening Imagery (2003.12625v1)

Published 27 Mar 2020 in cs.CV and cs.LG

Abstract: X-ray Computed Tomography (CT) based 3D imaging is widely used in airports for aviation security screening whilst prior work on prohibited item detection focuses primarily on 2D X-ray imagery. In this paper, we aim to evaluate the possibility of extending the automatic prohibited item detection from 2D X-ray imagery to volumetric 3D CT baggage security screening imagery. To these ends, we take advantage of 3D Convolutional Neural Neworks (CNN) and popular object detection frameworks such as RetinaNet and Faster R-CNN in our work. As the first attempt to use 3D CNN for volumetric 3D CT baggage security screening, we first evaluate different CNN architectures on the classification of isolated prohibited item volumes and compare against traditional methods which use hand-crafted features. Subsequently, we evaluate object detection performance of different architectures on volumetric 3D CT baggage images. The results of our experiments on Bottle and Handgun datasets demonstrate that 3D CNN models can achieve comparable performance (98% true positive rate and 1.5% false positive rate) to traditional methods but require significantly less time for inference (0.014s per volume). Furthermore, the extended 3D object detection models achieve promising performance in detecting prohibited items within volumetric 3D CT baggage imagery with 76% mAP for bottles and 88% mAP for handguns, which shows both the challenge and promise of such threat detection within 3D CT X-ray security imagery.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com