Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Closed-loop Parameter Identification of Linear Dynamical Systems through the Lens of Feedback Channel Coding Theory (2003.12548v1)

Published 27 Mar 2020 in eess.SY, cs.LG, and cs.SY

Abstract: This paper considers the problem of closed-loop identification of linear scalar systems with Gaussian process noise, where the system input is determined by a deterministic state feedback policy. The regularized least-square estimate (LSE) algorithm is adopted, seeking to find the best estimate of unknown model parameters based on noiseless measurements of the state. We are interested in the fundamental limitation of the rate at which unknown parameters can be learned, in the sense of the D-optimality scalarization criterion subject to a quadratic control cost. We first establish a novel connection between a closed-loop identification problem of interest and a channel coding problem involving an additive white Gaussian noise (AWGN) channel with feedback and a certain structural constraint. Based on this connection, we show that the learning rate is fundamentally upper bounded by the capacity of the corresponding AWGN channel. Although the optimal design of the feedback policy remains challenging, we derive conditions under which the upper bound is achieved. Finally, we show that the obtained upper bound implies that super-linear convergence is unattainable for any choice of the policy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.