Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On the role of surrogates in the efficient estimation of treatment effects with limited outcome data (2003.12408v5)

Published 27 Mar 2020 in stat.ML, cs.LG, and stat.ME

Abstract: In many experimental and observational studies, the outcome of interest is often difficult or expensive to observe, reducing effective sample sizes for estimating average treatment effects (ATEs) even when identifiable. We study how incorporating data on units for which only surrogate outcomes not of primary interest are observed can increase the precision of ATE estimation. We refrain from imposing stringent surrogacy conditions, which permit surrogates as perfect replacements for the target outcome. Instead, we supplement the available, albeit limited, observations of the target outcome with abundant observations of surrogate outcomes, without any assumptions beyond unconfounded treatment assignment and missingness and corresponding overlap conditions. To quantify the potential gains, we derive the difference in efficiency bounds on ATE estimation with and without surrogates, both when an overwhelming or comparable number of units have missing outcomes. We develop robust ATE estimation and inference methods that realize these efficiency gains. We empirically demonstrate the gains by studying long-term-earning effects of job training.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com